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ABSTRACT This paper proposes a novel Electromagnetic Band-Gap (EBG) leaky-wave antenna (LWA)
operating in the K-band with enhanced directivity at broadside. A rigorous method that combines the
analysis of the band diagrams of Bloch waves propagating within two-dimensional (2-D) EBG structures
and the properties of bound and leaky modes in transversely open lattice waveguides is used to design
the antenna. For the first time, a three-dimensional (3-D) realistic configuration of the EBG structure is
designed, manufactured, and measured in the K-band. An effective leaky-wave approach is applied in
conjunction with the use of “ad-hoc” and commercial EM full-wave software for the accurate design of
the structure to be realized. The prototype consists of 7× 8 alumina cylinders positioned above a ground
plane and supported by two vertical metal plates. The antenna is fed by two counterphase monopoles.
A rat-race hybrid junction, located just below the antenna, feeds the two monopoles. The measurements
show a very good agreement with the adopted leaky-wave model. Experimental results show a broadside
directivity of 12.8 dBi and a return loss of 24 dB at the frequency of f = 24.6 GHz. The design reported
operates in the K-band in reason of its application for the project PRIN 2017 WPT4WID under grant
2017YJE9XK005.

INDEX TERMS electromagnetic band-gap, periodic structures, photonic crystals, leaky modes, leaky-wave
antenna (LWA), K-band

I. INTRODUCTION

THE investigation of focused electromagnetic emissions
from a source within two-dimensional (2-D) photonic

crystals (PCs) [1], also known as electromagnetic band-gap
(EBG) structures, has been conducted in lattices composed
of dielectric and metallic cylinders [1]–[13]. EBGs present
frequency intervals (band-gaps) where electromagnetic prop-
agation is not allowed, in between frequency ranges where
the wave equation has solutions, corresponding to the Bloch
modes of the 2-D lattice. Both features have been profitably
exploited to improve antenna performance, but compared
to the vast literature existing on cavity antennas operating
within the band-gaps of the EBG superstrates [9], [11], [13]–
[18], the use of EBG modes was instead explored to a minor
extent. A recent example of application of the first approach
is the realization of all-dielectric artificial materials em-

ployed as superstrates of Resonant Cavity Antennas (RCAs)
[19]–[21]. Cavity antennas using alumina superstrates are
presented in [15], [17]. Some pioneering works on the second
approach can be found in papers by Enoch et al. [4], [6], [7],
where the directivity of a primary radiator was enhanced
by embedding it in a square lattice of dielectric cylinders
working at the lowest edge of the air band. This physical
mechanism, explained in terms of dispersion diagram (i.e.,
eigenvalues) of the lattice, paved the way to next studies, as
for example an investigation of degenerate band edges [22]
and assessment of alternative lattice configurations [23]. In
particular, in [9], the two methods are evaluated in terms of
directivity, with reference to several optimized 2-D layered
configurations, based on either square or triangular arrays of
dielectric rods. Various configurations with different number
of layers and rods per layer, i.e., different vertical and
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horizontal dimensions, respectively, have been compared,
clearly demonstrating that the first mechanism (cavity) is
the most effective for low-profile structures, as it delivers
the highest performance with a less number of layers, despite
requiring extended antenna apertures. In contrast, the second
approach (embedded source) proves to be more advantageous
for compact structures, i.e., taller but less extended ones, as
it outperforms resonator antennas when considering reduced
apertures. Regarding bandwidth and antenna efficiency, line
sources embedded within the EBG demonstrate superior
properties compared to the cavity method.

The group of “Roma Tre” University improved the theo-
retical approach and realized experimental results proposed
in [8]–[10], highlighting the peculiar strengths inside X
band and opportunities offered by this approach compared to
metamaterials and cavity antennas. In detail, the performance
of Enoch’s approach was compared to the one based on band-
gaps in [8]; a more comprehensive design approach based
on lattice eigenmodes rather than eigenvalues was introduced
in [9], and its application to realize a dual-fed antenna was
presented in [10]. The position of the primary source and
the use of metallic vias play a crucial role in the design of
this kind of antennas, which rely on generally multi-modal
periodic structures, allowing to properly excite the desired
mode and suppress the unwanted ones [24].

In [25], an in-depth investigation of the radiation mecha-
nisms of 1-D open waveguides composed by 2-D dielectric
lattices has been provided in terms of leaky modes. A
method based both on the analysis of the band diagrams
of the Bloch modes propagating in the 2-D EBGs and the
properties of bound and leaky modes in transversely open
lattice waveguides have been shown to provide an interesting
perspective for effective antenna analysis. Furthermore, this
viewpoint proves to be greatly beneficial for both antenna
design and physical comprehension, leveraging the robust
tools offered by the established theory of 1-D bidirectional
leaky-wave antennas (LWAs) [30]. This theory is rooted in
the knowledge of the complex wavenumbers associated with
leaky modes [26], [27]. A list of practical design rules for
the design of metal bisected EBG LWAs showing highly
directive broadside beams are provided by the authors in
[28].

Bidirectional LWAs have been successfully proposed, e.g.,
in the form of Fabry-Perot cavity antennas, to easily provide
high-gain pencil beams at broadside [30]. Recent studies
in the literature have focused instead on 1-D bidirectional
LWAs, which show enhanced gain in the form of a fan beam
at broadside, by leveraging on the compact size and planar
configuration of the microstrip technology in the microwave
range [31], [32]. An array antenna exhibiting comparable
gain in the broadside configuration, but operating at lower
frequencies, is presented in [33], whereas an array of stacked
groove gap waveguide LWAs designed to operate in Ka band
is presented in [34].

FIGURE 1. Band diagram along the edge of the irreducible Brillouin zone
for a square lattice of cylinders with r = 1.245 mm and dielectric constant
εr = 9.8. The period is p = 4.1 mm.

In this paper, for the first time, a 3-D realistic configuration
of the EBG LWA, modeled by means of the 2-D leaky-wave
approach in [25], is designed, manufactured, and measured
in the K-band. First, a metal bisected 2-D lattice is studied,
which allows, when excited by a bidirectional source, for
a directive single beam radiation at broadside by means of
the first higher order leaky air mode of the original lattice.
The novelty of the present contribution lies in the subsequent
implementation of this concept into a 3-D open waveguide
structure, where dielectric cylinders are sandwiched between
two metal plates and excited by a properly phased monopole
feeder, ensuring consistency with the 2-D modal analysis.
The structure is designed and simulated by using both
suitable “ad hoc” codes [29], [35] and general purpose
full-wave EM software, e.g., CST Microwave Studio [36],
showing a very good agreement with the adopted leaky-wave
model. An extensive parametric analysis has been performed,
by considering manufacture tolerances which can affect the
permittivity and the dimension of the circular dielectric rods.
Experimental results, which validate our approach, are also
presented and discussed on the basis of the available para-
metric studies and measured performance of all the adopted
devices. The ultimate design showcased operates within the
K-band frequency range, chosen specifically due to its suit-
ability for integration into a wireless power transfer system
tailored for biomedical applications [37], or other industrial
applications [38], but the radiation concept is promising also
at higher frequencies for 5G [39] and references therein, or
future applications.

The methodology presented in this work offers a novel
and versatile approach that can be applied to a wide range of
structures, enabling the design of antennas and sensors with
enhanced radiation efficiency and directivity. The proposed
procedure also provides a certain easiness of fabrication,
design process and low overall complexity. Specifically,

2 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Antennas and Propagation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJAP.2025.3564352

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



FIGURE 2. (a) 2-D EBG structure consisting of a finite number Ny of
periodic chains of circular dielectric rods spaced by a distance d along
the y-direction. The rods have radius r and they are spaced p along the
direction of periodicity. d = p and r/p = 0.303. The unit cell is indicated
with dashed lines. (b) Brillouin diagram for the m = 0 and m = −1 space
harmonics of the TE bound and leaky modes of the structure in (a). The
forward (bound) dielectric modes at lower frequencies are indicated with
blue lines, with the corresponding backward modes at higher frequencies
as black lines. The first three forward air modes are indicated with yellow
(bound modes) and the improper leaky mode with red.

by envisioning design developments based on dual “holey”
structures [28], such as antennas formed by lattices of vac-
uum cylinders embedded in a dielectric hosting medium, we
can expect to obtain significant manufacturing advantages,
especially how these structures can be efficiently produced
using additive manufacturing techniques.

The paper is organized as follows: in Section II the
theoretical approach is described, in Section III the antenna
design is presented, in Section IV the experimental results
of the prototype are presented.

II. THEORETICAL 2-D MODEL
We consider an open waveguide composed by a stack (along
a transverse direction) of infinite periodic chains of dielectric
cylinders placed above a ground plane, as shown in Fig.
2 (a). The fundamental advantage of the model presented
in [25] lies in its capacity to provide a rigorous account of
radiation losses in the free space above the stack of periodic
chains. This is achieved by the appropriate consideration of
the leaky and bound modes propagating along the x-axis

FIGURE 3. Dispersion diagram for the leaky AM1, with parameters as in
Fig. 1.

of the waveguide. In particular, the radiative features of the
lattice structure can be rigorously described in terms of a
properly excited fundamental leaky mode, whereas all the
other bound and leaky modes of the open waveguide are not
excited.

A typical LWA can be obtained by exploiting the modal
symmetries shown in [25] and bisecting the structure with
a perfect electric conductor (PEC) plane. Here, we consider
a 2-D PC structure which consists of a finite number Ny

of periodic chains of circular dielectric rod spaced d along
the y-direction and positioned above a ground plane. The
cylinders have radius r and they are spaced by a distance
p along the x-direction (in this work d = p). The dielectric
constant of the cylinders is assumed to be εr = 9.8 and the
ratio of their radius to the period of the structure is equal to
r/p = 0.303.

Brillouin diagram for the m = 0 and m = −1 space
harmonics of the TE bound and leaky modes of the structure
is shown in Fig. 2 (b). The forward (bound) dielectric modes
at lower frequencies are indicated with blue lines, with
the corresponding backward modes at higher frequencies as
black lines. The first three forward air modes are indicated
with yellow (bound modes) and the improper leaky mode
with red. The band diagram along the edge of the irreducible
Brillouin zone for the square lattice corresponding to the
structure of Fig. 2 (a) is illustrated in Fig. 1. The complete
bandgap region extends from k0p/π = 0.5 to k0p/π = 0.65,
which is in very good agreement with the stopband of the
relevant 1-D periodic open waveguide in Fig. 2(b), since a
bound mode of the open waveguide cannot propagate if all
the plane waves of the 2-D lattice lie within the complete
bandgap region.

Figure 3 shows the normalized phase and attenuation
constants of the dominant leaky air mode AM1, obtained
with the rigorous full-wave modal solver developed in [29],
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FIGURE 4. Comparison between CST total field (2-D and 3-D model) and
the theoretical leaky-wave pattern of the leaky AM1 (p/λ = 0.328).
Nx = 7 and Ny = 8 in the 2-D model. In the 3-D model the dimensions
are 21.50 × 39.8 × 28.7 mm.

[40]. The complex multimodal behavior exhibited by this
type of lattice waveguide may pose challenges in optimiz-
ing focused leaky-wave radiation. Specifically, an important
characteristic of LWAs is the ability to excite a single
dominant leaky mode at a given operating frequency, without
interference from other bound or leaky modes supported
by the structure. The existence of multiple leaky modes
would lead to the formation of undesired beams pointing
in different directions. Additionally, simultaneously exciting
bound modes alongside the leaky modes would significantly
reduce the efficiency of the LWA or cause unwanted spu-
rious radiation at the truncation in real-world applications.
However, unwanted effects can be reduced by choosing the
source location appropriately as shown by the detailed modal
analysis in [25].

The condition for maximum radiation power density at
broadside, i.e., β = α, which corresponds to the main
beam on the verge of splitting into two separate beams
(beam-splitting condition) [41], occurs at p/λ = 0.328.
The normalized complex leaky-mode wavenumber at the
normalized broadside frequency is kx/k0 = 0.124− j0.131.
The source is located in the middle of the unit cell (see Fig.
2 (a)).

Generally, the design of a LWA is based on the radiative
behavior of a dominant leaky mode, which once excited by
a suitable source, should radiate at least 90% of the injected
power before reaching the antenna truncation. Indeed, on the
basis of knowledge of the attenuation constant of the leaky
AM1 it is possible to truncate longitudinally the structure to
have a desired radiation efficiency through the well-known
formula Nx = −ln(1− ηr)/2πp̂â [30], where p̂ = p/λ and
the attenuation constant â = a/k0. In this case, to obtain
a radiation efficiency of ηr = 96 % we take Nx = 7.
The comparison between the theoretical leaky-wave pattern,
obtained through a standard analytical formulation for a

FIGURE 5. Proposed 3-D EBG LWA. The structure consists of 56 alumina
rods (εr = 9.8) supported by two metal walls. The dimensions are
21.50× 39.8× 28.7 mm. The cylinders have radius r = 1.245 mm and the
period is p = 4.1 mm. (b) Details of the feeding system. The structure is
fed by two monopoles in counterphase.

truncated bidirectional LWA [30], and the total field for the
2-D model, obtained with the commercial electromagnetic
simulator software CST Studio Suite, is shown in Fig. 4 with
solid green and dashed red curves, respectively, demonstrat-
ing a very good agreement.

III. 3-D EBG LWA DESIGN AND FABRICATION
In this Section the design of a realistic 3-D implementation
of the 2-D LWA modeled in Sec. II is performed carefully
considering the manufacturing details for both the dielectric
EBG antenna and the chosen feeder configuration.

The proposed 3-D structure, designed to operate in the
K-band and sketched in Fig. 5, consists of 7 × 8 alumina
rods with nominal dielectric permittivity of εr = 9.8. The
cylindrical rods, of radius r = 1.245 mm, are placed above
a ground plane and are embedded in two metal walls which
are intended to mimic the 2-D environment. The cylinder
spacing is equal to p = 4.1 mm. The size of the structure,
dimensioned to operate at f = 24 GHz, is 21.5×39.8×28.7
mm. A distance between the two metal walls is 13.5 mm,
which roughly corresponds to the wavelength λ. The antenna
is fed by two counterphase monopoles to maintain the
symmetry of the radiation pattern and avoid the excitation
of higher-order modes not included in the 2-D modeling
presented in Section II. In fact, if we had chosen a distance
between the metal plates slightly less than λ/2 and fed the
structure with a single probe, a very narrow band structure
with a non-symmetric beam would have been obtained in our
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FIGURE 6. (a) Side view and (b) bottom view of the antenna prototype.

FIGURE 7. Comparison between measured and simulated broadside
directivity and gain as a function of frequency in the range f = 23.5 − 25

GHz.

implementation. A couple of 2.92 mm coaxial connectors
used to feed two metallic pins, acting as monopoles, are
constructed as shown in Fig. 5. The length and diameter of
the monopoles have been appropriately chosen to achieve
impedance matching in the low mm-Wave range. In particu-
lar, the radius of the monopole is 0.21 mm, while the height,
relative to the side wall, is 2.23 mm. A rat-race 3-dB hybrid
junction, positioned below the structure, as shown in Fig.
5, feeds the two monopoles to obtain adequate excitation
of the designed antenna. In the manufacturing process, the
cylinders were put by drilling holes in one of the two metal
walls and inserting a conductive resin (shown in grey in Fig.

FIGURE 8. Parametric studies on manufacturing tolerances. Comparison
of broadside directivity as a function of frequency for different values of
the relative dielectric constant of the cylinders (nominal radius is
r = 1.245 mm).

5). Figure 6 shows the side and bottom views of the realized
prototype.

The 3-D structure was simulated by using CST Studio
Suite. The comparison between the theoretical 2-D leaky-
wave model presented in Section II and the total field
radiated by the simulated 3-D antenna, using the same geo-
metrical and electrical parameters of the model, is illustrated
in Fig. 4 as a dashed blue curve, obtaining a very good
agreement.

The radiation pattern (H-plane) of the simulated 3-D
structure shows a half power beam width (HPBW) of 28°
and a sidelobes level SLL = −16.5 dB.

IV. SIMULATED AND MEASURED RESULTS
The antenna was built by Systems Developments and Sup-
port S.r.l (SDS) and measured by Microwave Vision Group
(MVG) Italy with the multi-probe system StarLab.

Figure 7 shows the measured broadside directivity and
gain as a function of frequency in the range 23.5 < f < 25
GHz. From the measurements, it can be observed that the
peak values of broadside directivity and gain do not occur at
the design frequency of f = 24 GHz, but rather at a slightly
higher frequency, specifically at f = 24.6 GHz. In addition
to the frequency shift, a difference of about 3 dB between the
broadside gain versus directivity can be observed. Indeed, at
f = 24.6 GHz the measured directivity and gain are 12.7
and 9.7 dBi, respectively.

Afterwards, a tolerance analysis of the structure was con-
ducted to investigate the underlying cause of the frequency
shift of the directivity peak. Several parametric studies were
conducting using CST Microwave Studio.

At first, a study was conducted on the tolerances related
to the dielectric constant of the cylinders. Figure 8 shows the
variation of broadside directivity as a function of frequency
for different values of the dielectric constant. Considering
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FIGURE 9. Parametric studies on manufacturing tolerances. Comparison
of broadside directivity as a function of frequency for different values of
cylinder radius (εr = 9.2).

FIGURE 10. Measurement of Sij between the input and each of the
outputs of the rat-race.

FIGURE 11. Amplitude in dB of the measured reflection coefficient.

a variation from εr = 9 to εr = 9.8, a frequency negative
shift of approximately 0.8 GHz in the peak directivity is
observed. The dielectric constant value corresponding to the
case where the broadside directivity peak occurs at f = 24.6
GHz is εr = 9.2, which is within the 6% tolerance for the
dielectric permittivity of the manufactured circular rods.

Regarding the tolerance on the cylinder radii, specific
measurements were performed on the samples, and 56 cylin-
ders with radii closest to the nominal radius, denoted as
r = 1.245 mm, were selected for the prototype. However,
we also tested the effects of varying the radius dimension
from the nominal one. Hence, a parametric study was
performed on the tolerance for the radii at the dielectric
constant value (εr = 9.2) for which the broadside directivity
profile most closely matches the measured one (Fig. 8).
Figure 9 shows the variation of broadside directivity as a
function of frequency for different values of the cylinder
radii. Specifically, the nominal radius, denoted as r = 1.245
mm, and a tolerance of ±1%, were considered. A down
and up shift in frequency of the curves of the broadside
directivity has been observed for radii larger and smaller
than the nominal one, respectively. A variation of the radius
values by ±1% corresponds to a frequency shift of ∓0.2
GHz.

Figure 10 shows the measurements of the transmission
coefficient Sij between the input port and each of the two
coupled output ports of the rat-race positioned below the
antenna. It is possible to observe that the magnitudes are
very close to 5 dB, instead of being close to the nominal 3
dB value. This corresponds to a loss of about 2 dB that is
internally dissipated in the rat-race and affects the gain result,
as shown in Fig. 7. The measured reflection coefficient in the
frequency band between 23.5 and 25 GHz is shown in Fig.
11. At f = 24.6 GHz it assumes a value of |S11| = −24
dB. The impedance matching bandwidth at −15 dB is 190
MHz.

Following the analysis of the several parametric numerical
studies conducted on the tolerances, we decided to compare
the measurement results with the case where the dielectric
constant of the cylinders is εr = 9.2 and their radius is equal
to the nominal value r = 1.245 mm.

The comparison between the measured and simulated, at
εr = 9.2 and r = 1.245 mm, radiation patterns (E-plane and
H-plane) is shown in Fig. 12. Specifically, Fig. 12 (a) shows
the normalized radiation pattern of the directivity at f = 24.6
GHz in the H-plane. The measured H-plane sidelobes level is
SLL = −11 dB, which is higher than the simulated one. The
cross-polarization level, at broadside, is −24 dB. The half
power beam width (HPBW) is 27°, in perfect agreement with
the simulated one. The measured co-polar and the cross-polar
components on the H-plane are indicated in red and green,
respectively. Figure 12 (b) shows the normalized radiation
pattern of the directivity in the E-plane. Figures 12 (c) and
(d) show the normalized radiation pattern of the gain in the
H- and E-plane, respectively. An overall good agreement
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FIGURE 12. Simulated and measured normalized radiation pattern at f = 24.6 GHz: directivity in the (a) H-plane and (b) E-plane; gain in the (c) H-plane
and (d) E-plane. The measured broadside directivity is 12.7 dBi, 1.5 dBi below the simulated one.

between measured and simulated results is observed for the
realized 3-D EBG LWA, where misalignment with respect
to the ideal model is within the manufacturing tolerances.

V. CONCLUSION
In this paper an Electromagnetic Band-Gap leaky-wave an-
tenna optimized for K-band has been presented. A rigorous
design approach integrating analysis of Bloch-wave band di-
agrams within 2-D photonic crystals and properties of bound
and leaky modes in transversely open lattice waveguides
has been adopted. The structure consists of 7 × 8 alumina
cylinders positioned above a ground plane and supported by
two metal walls, mimicking the 2-D environment. A feeding
system consisting of two counterphase monopoles has been
designed. The structure has been fabricated and measured,
showing a very good agreement with the adopted leaky-wave
model. Experimental results, which validate our approach,
have also been presented. In future works, the possibility of
exploiting holey lattices will be considered. They are more
effective for achieving highly directive radiation, primarily
due to the excitation of a weakly attenuated fundamental
leaky mode. Additionally, the study will explore the potential

to reduce the relative permittivity of the dielectric medium
while maintaining the same key leaky-wave radiative proper-
ties. These holey structures can offer significant advantages
in terms of 3-D printing manufacturing process and lower
complexity.
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